DEPARTMENT OF BCA (Science) Programme Name - BCA (Science)

Programme Outcomes

- 1. Ability to adapt analytical and logical thinking in order to solve real world problems and deploy reliable software programs.
- 2. Ability to investigate complex problems and provide computer based solutions.
- 3. Ability to adapt new technologies for upgrading their skills and contributing to a lifelong learning.
- 4. Ability to demonstrate knowledge of Computers and its applications in order to enhance basic understanding of various software technologies.
- 5. Ability to become employable in a variety of IT companies and government sectors and also seek entrepreneurship opportunities for the betterment of an individual and the society at large.
- 6. Ability to create and manage multidisciplinary projects and successfully apply software and project management principles.

7.

Course outcomes

First Year (Autonomous)

Sem - I

Subject Code: 22-BCA-111 Subject Name: Fundamentals of Computers

Course Outcomes

At the end of the course, students will be able to

- Define working of computers and peripherals, types of software and languages
- Troubleshoot the computer systems and use utility software
- Choose commands and features of operating systems and application software
- Use open source software

Subject Code: 22-BCA-112 Subject Name: Problem Solving and C Programming

Course Outcomes:

At the end of the course, students will be able to

- Define algorithms and explain their characteristics
- Formulate algorithm and draw flowchart to solve a given problem
- Explain use of appropriate data types, control statements
- Demonstrate ability to use top-down program design

Subject Code: 22-BCA-113 Subject Name: Basics of Web Design

Course Outcomes:

On completion of the course, students will be able to-

- Develop web based application using suitable client side and server side web technologies.
- Build web pages using HTML, CSS, Java Scipt

Subject Code: 22-BCA-114

Subject Name: Applied Mathematics

Course Outcomes:

On completion of the course, students will be able to-

- Relate and apply techniques for constructing mathematical proofs and make use of appropriate set operations, propositional logic to solve problems
- Use function or relation models to interpret associated relationships
- Apply basic counting techniques and use principles of probability
- Given a data, compute various statistical measures of central tendency
- Use appropriate Sampling techniques

Subject Code: 22-BCA-115 Subject Name: Fundamentals of Computers Laboratory

Course Outcomes:

On completion of the course, students will be able to-

- Install operating system and execute various commands
- Effectively use various features of application software
- Create and use spreadsheets effective
- Prepare effective Presentation

Subject Code: 22-BCA-116 Subject Name: Problem Solving & C Programming Laboratory

Course Outcomes:

On completion of the course, students will be able to-

- Formulate an algorithm and draw flowchart for the given problem
- Implement the given algorithm in C
- Write programs using appropriate data types and control structures in C

Subject Code: 22-BCA-117Subject Name: Web Designing Laboratory

Program Outcome:

- Create web pages using HTML and Cascading Styles sheets
- Analyze a web page and identify its elements and attributes
- Create dynamic web pages using JavaScrip

Subject Code: 22-BCA-118

Subject Name: Applied Mathematics

Laboratory

Course Outcomes:

On completion of the course, student will be able to

- Apply mathematical and statistical concepts to solve problems
- Use R to perform statistical operations and data visualization

SEMESTER II

Subject Code: 22-BCA-121

Subject Name: Computer Organization

Course Outcomes:

On completion of the course, student will be able to-

- Design of combinational circuits
- Design of sequential circuits
- Explain block diagram of CPU, Memory and types of I/O transfers
- To understand the working principles of multiprocessor and parallel organization's as advanced computer architectures

Subject Code: 22-BCA-122 Subject Name: Advanced C Programming

Course Outcomes:

• On completion of the course, student will be able to-

- Write programs using pointers, structures and unions
- Use Pre-processor directives
- Manipulate strings using library functions
- Write programs to perform operations on Files

Subject Code: 22-BCA-123

Subject Name: Software Engineering

Course Outcomes:

After completion of the course, a student will be able to

- Compare and contrast various Software Engineering models
- Decide on appropriate process model for a developing a software project
- Classify software applications and Identify unique features of various domains
- Prepare System Requirement Specification (SRS) for the given problem
- Design and analyze Data Flow diagrams Course Content

Subject Code: 22-BCA-124 Subject Name: Database Management Systems-I

Course Outcomes:

After completion of the course, a student will be able to

- Design E-R Model for given requirements and convert the same into database tables.
- Formulate database queries using SQL
- Design a database in appropriate normal form

Subject Code: 22-BCA-125 Subject Name: Computer Organization Laboratory

Course Outcomes:

On completion of the course, student will be able to-

- Design and implement combinational circuits
- Design and implement sequential circuits
- Translate real world problems into digital logic formulations

Subject Code: 22-BCA-126

Subject Name: Advanced C Programming

Laboratory

Course Outcomes:

On completion of the course, student will be able to-

- Write programs using pointers, structures and unions
- Use Preprocessor directives
- Manipulate strings using library functions
- Write programs to perform operations on Files

Subject Code: 22-BCA-127 Subject Name: Software Engineering Laboratory

Course Outcomes:

- Ability to translate end-user requirements into system and software requirements
- Ability to generate a high-level design of the system from the software requirements
- Will have experience and/or awareness of testing problems and will be able to develop a SRS report.

Subject Code: 22-BCA-128 Subject Name: Database Management Systems

Laboratory

Course Outcomes:

On completion of the course, student will be able to-

- Prepare E-R Diagram for the given problem statement
- Formulate appropriate SQL DDL Queries
- Formulate appropriate SQL DML Queries

Second Year (2019 pattern)

Course: Data Structure Course Outcomes (CO):

After completion of the course, a student will be able toCourse Outcome(CO)DescriptionCO1Understand and restates the fundamentals of basic data structureCO2Develop skills in implementations and applications of data structureCO3Apply appropriate algorithmCO4Design an efficient algorithm for the given algorithm.CO5Determine time and space complexity.

Code: BCA 231

Course Credits: 4

Course: Database Management Systems –II Course Outcomes (CO): Code: BCA 232

Course Credits: 4

After completion of the course, a student will be able to

Course	Description	
Outcome(CO)		
CO1	Formulate SQL queries with the help of advanced SQL features	
CO2	Perform various Database operations like functions, cursors, triggers and	
	exception handling using PL/PostgreSQL	
CO3	Compare and contrast different concurrency control and recovery	
	techniques.	
CO4	Apply mechanisms for database security	
CO5	Analyze various database system architectures.	

Course: Computer NetworksCode: BCA 233Course Credits: 4Course Outcomes (CO):

After completion of the course, a student will be able to

Course	Description		
Outcome(CO)			
CO1	Describe how computer networks are organized with the concept of		
	layered approach.		
CO2	Familiarize the student with the basic taxonomy and terminology of the		
	computer networking area.		
CO3	Identify the different types of network topologies and protocols.		
CO4	Enumerate the layers of the OSI model and TCP/IP. Explain the		
	function(s) of each layer		
CO5	Illustrate applications of Computer Network, Compare and contrast		
	different routing and switching algorithms		

Third Year (2019 pattern)

Course: Programming in Java

Code:

BCA351 Course Credits: 4 Course Outcomes (CO):

After completion of the course, a student will be able to

Course	Description
Outcome(C	
CO1	Identify classes, objects, class members and relationships for a given
	problem.
CO2	Design end to end applications using object oriented constructs.
CO3	Apply collection classes for storing java objects.
CO4	Use Java APIs for program development.
CO5	Handle abnormal termination of a program using exception handling.

Course: Data Mining and Data Science

Code: BCA352

Course Credits: 4

After completion of the course, a student will be able to			
Course	Description		
Outcome(CO)			
CO1	Identify the key processes of data mining, data warehousing and		
	knowledge discovery.		
CO2	Design data warehouse with dimensional modeling and apply OLAP		
	operations		
CO3	Identify appropriate data mining algorithms to solve real world problems.		
CO4	Compare and evaluate different data mining techniques like classification,		
	prediction, clustering and association rule mining.		
CO5	Choose an appropriate method to perform exploratory analysis		
CO6	Interpret results by carrying out data visualization and formal inference		
	procedures		

Course Outcomes (CO): After completion of the c tudant will be able t

Course: Principles of Operating Systems Course Outcomes (CO):

Code: BCA353

Course Credits: 4

After completion of the course, a student will be able to

Course	Description
Outcome(CO)	
CO1	Describe, contrast and compare differing structures for operating systems.
CO2	Explain how processes and threads are managed, and evaluate the performance of various scheduling algorithms.
CO3	Understand and explain process synchronization process and deadlock handling techniques.
CO4	Analyze the relationship between the operating system and the hardware environment in which it runs.
CO5	Explain how memory is managed, and evaluate the performance of various page replacement algorithms.
CO6	Defining I/O systems, Device Management Policies and Secondary Storage Structure and Evaluation of various Disk Scheduling Algorithms
CO7	Use system calls for managing processes, memory and the file system.

Course	Description
Outcome(CO)	
CO1	Apply the suitable algorithms to solve AI Problems.
CO2	
	Identify and apply suitable Intelligent agents for various AI applications.
CO3	
	Build a smart system using different informed search / uninformed search
	or heuristic approaches.
CO4	Represent complex problems with expressive language of representation.

After completion of the course, a student will be able to

Course: Cloud Co	mputing	Code: BCA355	Course Credits: 4	
Course Outcomes	(ČO):			
After completion of the course, a student will be able to				
Course	Descrip	tion		
Outcome(CO)				
CO1	Explain	Explain the core issues in cloud computing such as security, privacy, and		
	interope	rability.		
CO2	Choose the appropriate technologies, algorithms, and approaches for the			
	given ap	plication.		
CO3	Compar	e and contrast various cloud	services.	
